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INTRODUCTION 

Recently, coherent anti-stokes raman scattering (CARS) spectroscopy has 
undergone several modifications to enhance its usefulness for investigating 
flames. CARS can arise from the nonlinear response of homogeneous media. The 
nonlinear response of a homogeneous medium upon which waves u, and w, are inci- 
dent generates an oscillating polarization. The lowest order nonlinearity is the 
third order susceptibility. /3) (-033. ,.„ coi. 0^2), which generates a frequency 
component of the polarization at (03= 2 0)^ - 0,2 by the process termed "three wave 
mixing (ref 1). Resonant enhancement of three wave mixing occurs if o), - w, is 
made equal to a Raman active vibration, w^, in which case the enhancement of the 
signal 0)3 is termed a CARS process (ref 2). Since CARS is a coherent 
process, 013 is maximized if the wavevectors, k^, are phasematched so that 2k, = 
k2 + kg where k^ equals oi^n^/c, c the speed of light, and n^ the refractive index 
at frequency w^. m gases, which are nearly dispersionless, colinear beams are 
phasematched. Using this geometry, since CARS is generated by an iterative 
growth process, the spatial resolution is poor. If aj^ is split and phasematching 
achieved, 0)3 is maximized and, since CARS generation occurs only where all three 
beams intersect, the spatial resolution is improved. The split a., phasematched 
geometry is termed "BOXCARS" (ref 3). BOXCARS in which the wavevectors are not 
phasematched in one plane is termed folded (or nonplanar) BOXCARS and has the 
advantage that (.3 is easily spatially isolated from the generating beams (refs 4 
through 6). 

Conventionally 0)2 is narrowband and scanned to obtain the spectrum at -j. 
However, to obtain spectra in transient and/or turbulent media it is appropriate 
to use a broadband 0)3 [-150 cm"! full width at half height (FWHH) ] to obtain the 
full rovibrational spectrum at ^2 within the time duration of the laser 
pulse (-10 ns) (ref 7). Averaging of the single-shot spectra may be undertaken 
to improve the signal-to-noise according to the constraints of the experiment. 

BOXCARS has been used to obtain temperature and concentration of post-flame 
gases in stationary flames using broadband (ref 8) and narrow band (ref 9) spec- 
tra, and transient flames using single-shot (ref 10) spectra. Recently laser 
absorption measurements of the temperature and concentration of radicals have 
been reported in the thin reaction zone of atmospheric flames (ref 11) CARS 
measurements in the reaction zone of a flame have not been reported even though 
BOXCARS has more precisely defined spatial resolution in the direction of the 
laser beams than line-of-sight methods such as laser absorption. In addition 
CARS allows direct monitoring of the rovibrational levels of the reactant mole- 
cules as they undergo flame decomposition processes. 

Because of these capabilities, simultaneous measurement of N-, and NoO CARS 
was undertaken in the reaction zone of a lean CH,-N.O flame. A lean CH,-NoO 
flame near lift-off creates sufficiently sharp spatiaf and temperature gradients 
to show the capabilities of CARS. N2O CARS spectra, which have not been prev- 
iously reported, have structure at lower temperatures than diatomics due to the 
population of low-lying bending modes. N2O CARS spectra are especially suitable 
for studying initial decomposition reaction in a CH,-N20 flame. The measurements 
were extended for Nj CARS to the post flame region of a series of flames with 
equivalence ratio increasing to 1.0 to evaluate the agreement of temperatures and 



concentrations determined from CARS spectra with the results of thermocheraical 
calculations (ref 12). 

EXPERIMENTAL METHOD 

CARS spectra were generated using the apparatus shown in figure 1. Non- 
planar BOXCARS was utilized to achieve phasematching. The output of a Quanta-Ray 
DCR-IA Nd/YAG laser at 1.06 microns (700 mj) is doubled to generate the pump beam 
at 5320 A (250 m j) with a bandwidth near 1 cm"!. The pump beam is separated from 
the primary beam using prisms. The pump beam is split using beam splitter BSl to 
generate w^p and u^s. oj^s is used to pump a dye laser to generate the Stokes 
beam, ^2- The dye laser consists of a flowing dye cell in a planar Fabry-Perot 
oscillator cavity pumped slightly off-axis by 20% of i,i^s with the output ampli- 
fied by an additional dye cell pumped by the remainder of wj^s. The dye laser was 
operated broadband using Exciton Rhodamine 640 in dry methanol at a concentration 
of 2.4 X 10""^ M and 3.2 x 10~5 M In the oscillator and amplifier dye cell, re- 
spectively, to produce 30 mj centered at 6060 A (16502 cm"!) with a bandwidth of 
121 cm-1. To achieve BOXCARS geometry, oj^p is again split with beam splitter, 
BS2, to generate coj and ajj. In the optical configuration used to generate non- 
planar BOXCARS, the w^, wi, and 0)2 beams are parallel and situated on a circle of 
1 inch diameter at the focusing lens (200 mm focal length) with wi and wj in the 
central horizontal plane of the lens and ^2 below oi^ and u^ in the central verti- 
cal plane. Telescopes are inserted in the wip and 0)2 beams to allow the focal 
spot size of both beams to be equalized. The telescopes also allow the position 
of the tOp iii\, and 102 beamwaists to be adjusted so that they all intersect after 
focusing. This was achieved using 0.85 and 2x Galilean telescopes 
in (Djp and n^^, respectively. To achieve phasematching a 12.5 mm thick optical 
flat rotatable about it's horizontal axis was inserted into 0)2 before focusing. 
It is adjusted to maximize the 0)3 signal. The beams were recollimated with a 
lens (200 mm focal length) after which the (03 was located below the plane 
of 0)^ and u|. uj^, co^, and 0)2 were terminated with a neutral density filter 
(0D4). (1)3 was focused using a 50 mm focal length lens onto the slits of a 1/4- 
meter monochromator equipped with a 1,800 line per millimeter grating and 100- 
micron slits. The signal was detected by a PAR SIT detector and processed by a 
PAR 0MA2 system. Neon lines were used to calibrate the monochrometer. The FWHH 
of the Neon lines nearest 0)3 were determined to be 6.4 cm-1 with 2.33 cm-1 per 
channel. 

Flame measurements were made on a premixed CH,-N20 flame maintained on a 
circular burner of 1.4 cm diameter. The burner surface was constructed of a 
matrix of steel syringe needles of 0.2 cm outer diameter so that a flat flame is 
obtained under suitable flow conditions. Matheson technical grade methane and 
chemically pure nitrous oxide were separately flowed through Matheson rotameters 
prior to premixing. The flow through the burner was adjusted to 16.1 cm/s to 
maintain a 0.27 fuel-air equivalence ratio flame, which is near lift-off, local- 
ized at a few syringe tubes near the center of the burner. The oblong shaped 
flame increased in size to approximately 5 mm in diameter at 10 mm above the 
burner surface. Increasing the methane flow to that for a 0.31 equivalence ratio 
flame gave a flat flame at a flow of 16.3 cm/s. The flow conditions for the 
other flames used are given in the results section. The center line of the 
burner was placed at the Intersection of the la^, w\, and 0)2 beamwaists. The 
burner was mounted on horizontal and vertical translation stages. 



EESULTS 

Theory 

N2 CARS spectra were calculated using the method outlined in reference 13 
and N2 spectral parameters given in references 13 and 14. The observed CARS 
spectrum is proportional to the square of the modulus of the third order sus- 
ceptibility, x^-^^j which is the sum of a resonant term, v , related to a nuclear 
displacement and a nonresonant term, Y  > I'elated to electronic displacement. 

(3) 
X   = X^ + X^r (1) 

The resonant term is calculated as a sum of Lorentian line shapes of each 
Q(J) rotational transition 

X^ = ^^LJi  (2) 
j  2Aa). - ir. 

given that 

:|i/aj /2(4f) r^-l (3) 

where N is the number density, a. iS the isotropic polarizability matrix element 

for the transition, Ap. is the normalized population difference between the 
molecular energy levels Involved in the transition, r, is the isolated pressure- 
broadened linewidth, and Aa»j = O)]^ - ti^ - OJJ . The calculated /x^-^V^ is first 
convoluted over the laser snapes and then over a triangular instrumental slit 
function. 

X^ is the sum of real and imaginary components x' ^ri"^ x'^> respectively, 
that 

so 

, (3) ,2    .2 _^ „ .    ^  _2 ^   2     ■ ,,, 
/X   /  = X  + 2x  Xnr + X   + Xni- W 

x' and x'^ display resonant and dispersive behavior with respect to the detuning 
frequency. Aw-. 

As the concentration of the resonant species is lowered the cross 
term x' )C » which is dispersive, modulates the shape of the spectrum. The ob- 
servation of dispersively modulated spectra allows estimation of the concentra- 
tion in addition to the temperature based on model calculations. 

As an alternative to determining concentration from the shape of the total 
spectrum, concentration can be estimated from the ratio of the total CARS inten- 
sity, I, to the nonresonant intensity, Inr, at any frequency at which a resonant 
transition of the species occurs. In broadband CARS the nonresonant susceptibil- 
ity is usually observed directly in regions where no resonance occurs. The spec- 
tral distribution of the nonresonant susceptibility which mirrors that of u , can 
be obtained either from measurements of the distribution of u or directly from 



measurements on a nonresonant gas. The spectral distribution of the nonresonant 
susceptibility is relatively constant (as can be ascertained by measurements 
before and after a series of experiments). Therefore, measurement of the nonres- 
onant susceptibility at any frequency in the broadband spectrum will allow esti- 
mation of Inr, the nonresonant susceptibility at the frequency at which the in- 
tensity of the resonant transition, I, occurs. The function (I-Inr)/lnr should 
be independent of the laser intensity (although of course the precision will be 
affected by the intensity) and according to equations 2 and 3 vary with concen- 
tration quadratically at high concentration and linearly at lower concentration 
when )(' «2X'Y • I^ ^^^ is estimated at a frequency at which the nonresonant 
susceptibility oegins to have some significant contribution from the resonant 
susceptibility at higher concentrations a lowering of the quadratic dependence 
would be observed. This effect would depend on the ratio of the resonant to 
nonresonant susceptibility cross section for the system under investigation. The 
effect would be minimized by proper choice of the frequency at which the nonreso- 
nant susceptibility is determined. 

Air/Argon Mixtures 

N2 CARS spectra were taken at 2 mm above the burner head of mixtures of 
room temperature premlxed air and argon (AIR/AR) flowing through the burner. The 
composition of the AIR/AR mixtures was set by adjusting the flow of argon and air 
separately prior to premixing. The total flow for argon was at a rate at which 
no signal was observed from nitrogen diffusing into the argon flow from the sur- 
rounding air. The percentage of air in the mixtures varied from 0% to 30%. The 
spectra of the mixtures are shown in figures 2 and 3. The compositions of the 
mixtures for which N-j CARS spectra were taken are given in table 1. CARS spectra 
for which the air concentrations were determined from a fit of the total spectra 
to the calculated spectra are shown in figures 4 and 5. The concentration deter- 
mined by the best visual match between the calculated and experimental spectra 
were 9% and 20% air for gas mixtures whose compositions were 8.54% and 19.7%, 
respectively. 

Concentrations determined from the function (I-Inr)/lnr are given in 
table 1. I was determined from the intensity of the broadband CARS spectra at 
the frequency of the maximum of the nitrogen Q,Q resonance. Inr, which was 80% 
of the peak nonresonant susceptibility at the frequency of I, was determined from 
the intensity in the broadband spectra at the frequency at which the nonresonant 
susceptibility is 80% of the peak value on the other side of the peak of the 
nonresonant susceptibility curve from that at which the nitrogen resonance occurs 
to avoid interference from the resonant susceptibility. 

The values calculated for (I-Inr)/lnr are shown in figure 6 along with 
(I-Inr)/inr determined from model spectra. The calculated and experimental log 
(l-lnr)/lnr agreed closed as can be seen from figure 6. The percent of air in 
the mixtures (table 1) was determined from the theoretical curve given in figure 
6. For higher concentration the slope of the curve is near two. The slope as 
expected decreases for lower concentration. The agreement between the experimen- 
tally determined and known percent of air was 6.1%. In this method of determin- 
ing composition it is not necessary to obtain a calibration curve since the ex- 
perimental and theoretical spectra are in good agreement.   In addition, this 



method offers rapid data reduction of large amounts of data with reasonable 
accuracy. Fitting the full spectrum by a least squares method should give in- 
creased precision. 

Reaction Zone Spectra 

Broadband N2 and N2O spectra were obtained from the reaction zone of 
both the 0.27 and 0.30 equivalence ratio flames. In addition, N2 spectra were 
obtained in the post-flame region of these flames. The 0.27 equivalence ratio 
flame was scanned horizontally from the outer wall of the burner to the center- 
line at a height of 1 mm above the burner surface. N2 and N2O spectra obtained 
from the region of largest concentration and temperature gradient prior to the 
disappearance of N2O are shown in figure 7. The 0.30 equivalence ratio flame, 
which was a flat flame, was scanned vertically along the center line. Spectra 
similar to that shown in figure 7 were obtained below the region of maximum tem- 
perature. 

To identify N2O CARS spectra, which had not been reported previously, 
CARS spectra were also taken 1 mm above the centerline of the burner with room 
temperature N2O gas flowing through the burner at a velocity sufficient to remove 
N2 from the sampling volume. Spectra were taken above both a room temperature 
burner and a burner heated by heat transfer from a flame extinguished immediately 
prior to the measurement. The room temperature N2O spectra had a prominent peak 
at 2224.7 cm~^ with a low intensity shoulder at 2208.8 cm~^. The spectra taken 
above the hot burner showed four peaks of progressively diminishing intensity at 
2224.7, 2208.8, 2192.8, and 2174.7 cm"^.  Similar peaks have been observed at 
2223.8, 2209.5, and 2195.6 cm"^ in the infrared and Raman at 337 K and assigned 
to Vo, ■^^^ + ^^2 ~ ^2 ^^^ "^3 "^ ^^2 ~ ^^2 where Vp V2, and Vo are the NO stretch at 
1285, the bend at 558.8 and the NN stretch at 2223.5 cm"-'-, respectively (ref 
15). The positions of V3, V3 + V2 - V21 ^^3 + 2v2 and V3 + 32 - 3 2> using 
Susuki's values (ref 16) for the spectroscopic constants are calculated to occur 
at 2223.5, 2201.5, 2195.3, and 2180.3 cm"! in good agreement with the N2O peak 
position observed in the spectrum taken above the hot burner. The spectra taken 
in the flame (fig. 7) show, in addition to a peak attributable to the N2 Q branch 
fundamental, Qin> at 2330 cm~^ and associated hot bands, the same peaks that 
occur in N2O above the hot burner. An expanded version of the spectrum taken 1.4 
ram from the centerline is shown in figure 8. This spectrum clearly shows the 
resolved structure of hot N2O. 

The spectra shown in figure 7 and similar spectra taken at other posi- 
tions in the flame allow the determination of temperature and concentration 
of N2 and N2O. Comparison of the half width of the nitrogen QJ^Q transition and 
the modulation of spectra by the nonresonant susceptibility with model calcula- 
tions allows the estimation of temperature to ±100 K and concentration to ±10% 
when no hot bands are observed. Observation of hot bands allows least squares 
fitting of the calculated and experimental Q peak maxima to give temperature to 
±50 K and concentration to ±5% based on replicate determinations. Calculated 
spectra are shown in figures 8 and 9. The temperature and concentrations esti- 
mated for the 0.27 flame are given in table 2. 



In addition, the concentration of N2O can be estimated from the resonant 
and nonresonant intensity at V3 as discussed. Knowing the spectrum of the non- 
resonant susceptibility, the nonresonant intensity at Vo can be obtained from 
each broadband spectrum. The square root of the ratio of the resonant to non- 
resonant intensity, which is linear with concentration, was used to obtain N^O 
concentration utilizing the broadband N2O spectrum at room temperature for cali- 
bration. In this case experimental calibration is needed since the NoO CARS 
spectra were not calculated. (The effect of temperature, which was small since 
both the resonant and nonresonant susceptibility scale similarily with tempera- 
ture, was determined from model calculations). Having obtained the concentration 
of N„0, the N2 concentration can be obtained from the ratios of N2 to N2O inten- 
sity (fig. 10) taking into account that resonant cross section of N2O is 0.53 
that of N2 (ref 17). 

Post-Flame Spectra 

The agreement of temperature and concentration obtained from N2 CARS 
spectra with the results of thermochemical calculations (table 3) was investi- 
gated in the post-flame gases of lean and stoichiometric flames. Temperature and 
concentration were determined along the centerline of the burner as a function of 
distance above the burner. The temperature as indicated by the height of the Q^j^ 
and Qoo nitrogen hot bands increased with the rate of flow. As discussed. In a 
0.3 flame at 2 mm above the burner N2O was observed along with N2^ At 3 mm and 4 
mm above the burner surface, N2 was observed at temperatures of^ 2350 K and 2453 
K, respectively. At 5 mm the temperature and concentration (table 2) were deter- 
mined from the spectra shown in figure 9. Above 5 mm (up to 6 cm) the tempera- 
ture decreased while the concentration remained constant within experimental 
error. In lean and stoichiometric flames investigated with equivalence ratios 
higher than 0.3, at sufficiently high flow rates, NnO was not observed and Q2]^ 
and Qoo Nn relative heights indicated temperatures substantially above the values 
given by the thermochemical calculations with O32 indicating temperatures higher 
than Q21 and up to 4000 K in some instances. The cause of these anomalous spec- 
tra is presently being investigated. At lower flow rates the spectra (fig. 11) 
obtained 2 mm above the burner surface in 0.4, 0.5 and 1.0 flames in addition to 
the 0.3 at 5 mm, gave temperatures and concentrations (table 4) consistent with 
the thermochemical calculations. 

The experimental precision of the temperatures and concentrations was 
determined by comparison of four replicate measurements on the 1.0 flame. The 
error determined in this manner is consistent with the photon statistics of the 
measurements. The percent error in the measurements for the other flames should 
be similar since all the spectra were summed (200 scans) to give near to 10,000 

counts at QIQ- 

At a lower flow rate in the 0.5 flame lower temperatures were ob- 
tained. The profiles in the 0.5 flame at flows of 16.9 and 33.4 cm/s are given 
in tables 5 and 6, respectively. The N2 spectra at the higher flow are shown in 
figures 12 and 13. A comparison of the differing profiles is given in figure 
14. In the 1.0 flame, lower flame velocity resulted in flashback before any 

lowering in measured temperature was observed. 
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To summarize, in the 0.3 flame close to the burner surface (1 mm above) 
N2O spectra along with N2 spectra were observed. Higher above the burner surface 
(5 mm) a maximum temperature and concentration in agreement with thermochemical 
calculations was observed. In the 0.4 flame at the same flow, 16.8 cm/s and 
position in the flame N2O was not observed and the measured temperature and con- 
centration are in close agreement with theory. In the 0.5 flame at nearly the 
same flow temperatures lower than theory are measured. At sufficiently high 
flow, 56.7 and 60.5 cm/s in the 0.5 and 1.0 flames, respectively, anomalous spec- 
tra giving apparent temperature much higher than theory were encountered. In the 
0.5 and 1.0 flames, at flow intermediate between striking back and those at which 
anomalous spectra were encountered, the temperature and concentration were con- 
sistent within experimental error with theory. The intermediate range of flows 
at which agreement with theory was obtained increased with the calculated flame 
temperature as the equivalence ratio was increased toward 1.0. 

DISCUSSION 

Measurements were made in AIR/AR mixtures to assess the use of CARS to de- 
termine concentration. Visually matching the shape of modulated CARS spectra 
with the results of model calculations for 9% and 20% AIR mixtures gives results 
within the accuracy of the flow meters (5%). A least squares fit of all the 
points would improve the precision. Alternately, comparing the experimental 
function (I-Inr)/lnr obtained from two experimental points with the theoretical 
function (l-Inr)/lnr versus concentration also allows evaluation of the concen- 
tration to close to the accuracy of the flow meters. These methods of obtaining 
concentration were used in obtaining the reaction zone and post-flame region 
results. 

CARS N2O spectra obtained above both room temperature and heated burner 
heads are in good agreement with previously reported Raman and infrared spectra 
(ref 15) and with the results of calculations made using the spectral constants 
of Suzuki (ref 16). CARS N2O spectra has the advantage of having structure use- 
ful for making measurements of temperature and concentration at much lower tem- 
peratures than diatomics such as nitrogen. From the temperature obtained from No 
spectra (table 2) the normalized intensity of the N^O V3 + V2 - V2 band relative 
to V3 is greater than 0.1 above 600 K, whereas the normalized intensity of the N2 
02]^ band does not reach 0.1 until the temperature exceeds 1500 K. The higher 
intensity of the N2O V3 4- V2 - V2 band arises from the low energy and double 
degeneracy of the V2 vibration. Thus N2O and similar triatomics are especially 
valuable for characterizing the lower temperature regions of the profiles ob- 
tained in the 0.27 flame. In this region the N2 spectra were not sufficiently 
intense to precisely estimate temperature. The complete modeling of N2O CARS 
spectra which is now underway will allow these calculations to be made. 

The simultaneous observation of N2 spectra along with N2O spectra allows 
determination of N2 to N2O relative concentration, N2 and N2O temperature and 
concentration. The random error in the N2O resonant to nonresonant intensity 
ratios depend solely on the photon statistics of the measurements. (In the worst 
case the resultant error would be 5% in N2 concentration). The accuracy of the 
N2 concentrations determined from the relative intensity of Nj to N2O also de- 
pends on the relative ratios of the Raman cross sections.  The N2 temperature and 



concentrations determined from the shape of the N2 CARS signal depends on the No 
spectral parameters and the spectral simulation model which together have been 
estimated to give errors of ±100 K at low temperature and 10% in concentration in 
flames when only N2 OJ^Q is observed. The average difference between No concen- 
tration determined from intensity ratio and band shape is only 10% which is con- 
sistent with the estimated error in the methods used. When additional hot bands 
are observed the precision is increased to ±50 K in temperature and 5% in concen- 
tration. 

The data in figure 10 give insight into the chemical and physical processes 
occurring in the very spatially inhomogeneous 0.27 flame. No from the surround- 
ing air diffuses into the flame for a distance of approximately 2 mm at which 
point N2 CARS spectra is no longer observed (fig. 10). No is again observed when 
measurements are made closer than 2.3 mm from the centerline of the flame. The 
(NO/N20)% ratio then rises exponentially as measurements closer to the flame are 
made with a concomitant rise in temperature. 

H2-N2O flames have been studied in detail using mass spectometric means to 
obtain concentration (ref 18). From these studies it is suggested that the H^- 
N2O flame has a two-stage reaction zone. In the first stage (K1700 K) the ki- 
netics follow the usual bimolecular elementary steps of the hydrogen-oxygen 
system: 

H2 + OH -^ H2O + H r. 1 

H2 + 0 > OH + H r. 2 

H+02->-0H + H r.3 

plus reaction 

H + N2O ^ N2 + OH r. 4 

where k^ = 6 x 10^^ exp (-13100/RT)cm3 mole~ls~^ all these reactions are charac- 
terized by a relatively low activation energy. 

The second stage (T>1700 K) is dominated by the unimolecular decomposition 
of N2O 

N2O +M+N2+O+M r.5 

,15 where k^ = 1.3 x 10^^ exp (-56500/RT).  Molecular oxygen is produced via 

and NO via 

N2O + 0 -»■ N2 + O2       r. 6 

N2O + 0 ^- 2N0 r. 7 

where k^ = 5.4 x 10^'^ exp (-32000/RT)cm3 mole ^s ^ with k^/ky = 3.2. 



The data given in table 2 and figure 10 are consistent with the kinetics 
proposed above for stage one, in that N2 is observed to occur at temperatures 
below the 1700 K at which the stage two reactions become significant. Thus reac- 
tion 4 is seen as a possible source of the No observed at low temperature in the 
CH^-N20 flame. Further kinetic analysis particularly dependent on temperature 
and concentration from N2O spectra, will determine whether reaction 4 can quanti- 
tatively account for the N2 and N2O profiles observed in the CHA-N2O flame. 

In the post-flame region the variation of measured temperature with flow can 
be partially accounted for by the variation of the position of the reaction zone 
with respect to the burner as a function of flow. In the 0.3 flame, the burning 
velocity is sufficiently low to be displaced by a flow of 16.8 cm/s above the 
burner surface to allow observation of N2O spectra from the reaction zone. As 
the burning velocity increases for the flames with increased equivalence ratio 
the flow is not sufficient to allow observation of N2O; however, temperature is 
observed to increase with flow which indicates that the reaction zone is dis- 
placed sufficiently above the burner surface to inhibit heat lost to the 
burner. The displacement of the reaction zone above the burner surface so that 
heat loss to the surface is inhibited is consistent with the agreement within 
experimental error of the measured and calculated flame temperatures (refs 19 and 
20). The anomalously high temperature indicated at still higher flows is perhaps 
related to distortion of the reaction zone by turbulence induced by the high flow 
(refs 19 and 20).  Further work is needed to interpret the spectra at high flow. 

Broadband CARS has been shown to provide temperature and concentration with 
good precision for major flame species which can perhaps be extended to tran- 
sients with resonance enhancement. The spatial resolution of the technique was 
adjusted to obtain information from the thin resolution zone (<1 mm) of the atmo- 
spheric CH^-N20 flame. The technique also has the potential for time resolved 
single shot (10 ns) measurements for use in transient media. These capabilities 
as has been shown in the ai^-N20 flame can be used to obtain information on the 
elementary reactions occurring in both transient and stationary flames. 
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Table 1.  Concentration of air (%) in air/ar mixtures at 300 K 

Co incentr ation Difference 
between columns 

1 and 2 

% 
bel 

Difference 
Experimen 

(%) 
ital Calculated 

(%) 
:ween columns 

1 and 2 

7.06 5.92 1.1 16.1 

8.54 7.80 0.7 8.7 

12.0 11.6 0.4 3.3 

13.8 14.8 -1.0 7.2 

19.7 18.8 0.9 4.5 

22.8 22.7 0.1 0.50 

30.2 31.0 -0.8 2.65 

Mean ( a) 0.7 (0.3) 6.1  (5.1) 

Table 2.  Temperature and concentration in the reaction zone 
of a Qi^-N20 flame (2 mm above the burner) 

Concentration and temperature 
from N2 spectral shape 

^^C/o) T(K) 

Distance from Concentration from 
flame center intens lity (%) 

(mm) N^O 
^2 

0 

1.14 0 — 

1.27 20 19 

1.40 28 15 

1.52 43 11 

1.65 58 9.4 

1.78 69 7.9 

2.03 83 6.0 

2.16 93 — — 

33 2300 

20 1200 

17 900 

14 800 

10 600 
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Table 3. Thermochemical calculations for CH,-N^O flames 

0.1        0.3       0.4       0.5       0.7       1.0 
Species Composition (%) 

CO 0.02 0.43 0.99 1.77 3.80 7.35 

CO2 1.62 4.28 5.14 5.69 6.09 5.66 

H — 0.11 0.27 0.50 1.14 2.30 

H2 >_ 0.14 0.32 0.59 1.43 3.55 

H2O 3.13 8.46 10.66 12.60 15.90 19.30 

N2 64.82 61.64 60.03 58.40 55.40 51.28 

NO 1.33 .2.25 2.42 2.43 2.17 1.48 

0 0.12 0.79 1.21 1.54 1.87 1.58 

OH 0.27 2.53 2.27 2.93 3.81 4.02 

O2 28.69 20.37 16.71 13.50 8.41 3.49 

T(K) 21.72 25.41 26.54 27.38 28.46 29.20 

Table 4. Measured and calculated temperature (K) and 
Np concentration (%) in a CH^-N20 flame 

HT(mm) 5        2        2        2 

Flow (cm/s)    16.8     16.8     33.4     51.7 

Equivalence ratio (F/O) 

0.3 0.4 0.5 1.0 

TEXP 2550 2688 2782 2982 ± 52 (2%) 

TCALC 2541 2654 2738 2920 

CEXP 60 58 54 45 dr 3 (6%) 

CCALC 62 60 58 51 

14 



Table 5. Temperature and N2 concentration profile in a CH^-N20 flame 
((|) = 0.5) at a flow of 16.9 cm/s (TCALC = 2734K, CCALC = 58%) 

Height above 
burner (mm) Temperature (K) 

3 2566 

5 2559 

in 2563 

15 2491 

20 2320 

30 2090 

40 1840 

50 1820 

60 1700 

Concentration (%) 

54.7 

46-5 

46.5 

51.6 

47.6 

51.9 

49.6 

50.5 

51.8 

Table 6.  Temperature and N2 concentration profile in a CH4-N2O flame 
((t) = 0.5) at a flow of 33.4 cm/s (TCALC = 2734K, CCALC = 58%) 

Height above 
burner (mm) Temperature (K) 

3 2782 

10 2742 

20 2713 

30 2631 

40 2521 

50 2404 

60 2282 

Concentration (%) 

54.2 

55.3 

50.8 

47.2 

51.1 

50.7 

51.4 
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Figure 2.  Normalized nitrogen CARS spectra from room temperature air/argon 
mixtures containing 0% to 23% air 
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AIR/AR MIXTURES AT 300K 

cc 
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LOG [c (%)] 

Figure 6. Experimental ( .) and theoretical log (I^Q - Inr)/lnr) where IJ^Q and 
■'"nr ^'^^ ^'^^ maximum intensities of nitrogen Q,Q and the nonresonant 
susceptibility versus log [C(%)] 
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Figure 8.  CARS spectra observed 1 mm above the burner head in a 0.27 CH,-N20 
flame ( •) compared to theoretical spectra (solid line), calculated at 
T = 800 K and C = 14% N and T = 1200 and C = 20% N2 for spectra 
obtained 1.40 (TOP SPECTRUM) and 1.14 mm (BOTTOM SPECTRUM) from the 
centerline of the flame, respectively 
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Figure 9. TOP SPECTRUM: N2 CARS spectrum observed 2 mm above the centerline of 
0.3 CH^-N20 flame ( •) compared theoretical spectrum calculated at T = 
2550 K and C = 62% No 

BOTTOM SPECTRUM:  N. CARS spectrum observed 1 mm above the centerline 
of a 0.27 CH^-N  flame ( .) compar ' 

lated at T = 2300 K and C = 33% N2 
of a 0.27 CH^-N  flame ( .) compared to theoretical spectrum calcu- 
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Figure 10. ^^N2^^^2'^'^   ( *) obtained from CARS spectra taken 1 mm above the burner 
head of a 0.27 CH^-N20 flame and corresponding temperatures (•) 
versus distance from the centerline of the burner 
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Figure   11 Experimental   ( .)   and  calculated  N2   CARS   spectra   (solid   line)   2 ram 
above   the  centerline  of   the   burner  surface:     BOTTOM,   0.4   flame;   TOP, 
1.0  flame 

27 



1.00  - 

0.60 

0.20 

1.00  - 

0.60  - 

0.20  - 

2160.0 2240.0 2320.0 2400.0 

Figure 12.  Experimental ( •) and calculated N2 CARS spectra (solid line) from a 
0.5 flame at various distances from the burner surface:  BOTTOM, 2 
mm; TOP, 10 mm 
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Figure 13. Experimental ( .) and calculated N2 CARS spectra (solid line) from 0.5 
flame at various distances from the burner surface:  BOTTOM 20 mm- 
TOP, 40 mm 
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